

10 – 11 mai 2023 – Lunéville

Les matériaux utilisés en conditions extrêmes

La corrosion des matériaux réfractaires à haute temperature par les liquides et **Ies besoins de caractérisations**

Prof. Emmanuel de Bilbao

CNRS, CEMHTI UPR3079, Univ. Orléans, Orléans, France

EdB : What are the most important properties of refractory material to resist slag corrosion?

Chatounet : To resist slag corrosion, refractory materials should possess the following properties:

- 1. Chemical stability: blablabla.
- 2. High melting point: blablabla.
- 3. High density: blablabla.
- 4. Low porosity: blablabla.
- 5. Resistance to thermal shock: blablabla.
- 6. Resistance to erosion: blablabla.
- 7. Appropriate chemical composition: blablabla.

Overall, selecting a refractory material with the appropriate properties to resist slag corrosion is critical to ensure long-term performance and prevent costly maintenance and replacement.

Problématique de la corrosion

Exemples de corrosion

Exemple de corrosion d'une tuile d'UVEOM*

10 cm

* Audrey Tixier, GFC 2023, prix de la meilleure thèse

Cemht

03/05/2023

Exemple de corrosion d'une dalle d'impact[‡]

‡ de Bilbao et al., MRT 2015

Emmanuel de Bilbao

Problématique de la corrosion

Imprégnation réactive

Corrosion d'une alumine poreuse par un laitier $AI_2O_3 - CaO$

Prigent et al. 2008

Problématique de la corrosion

Pourquoi et quand faire toutes ces mesures ?

- Quel est l'objectif de l'étude ?
- Si OJECTIF = COMPRENDRE le mécanisme de corrosion :
 - Analyses post-mortem
 - Essais éventuels en laboratoires
 - Calculs thermodynamiques pour les équilibres locaux
 - Analyse de la composition des produits de corrosion par fluorescence X
 - Analyse de la minéralogie par diffraction des rayons X
 - Analyse de la microstructure par microscopie électronique à balayage

Première approche – La réactivité et la solubilité

 Al_2O_3 versus CA_6 – Une contradiction ?

Si on considère :

- 1 g de Al₂O₃ ou CA₆
- Laitier :

Cemht

- 50 %m CaO
- 50 %m Al₂O₃
- T = 1500 °C

Quelle quantité de laitier pour dissoudre complètement ?

03/05/2023

$$m_L = (X_{Al2O3/R} - S_L) / (S_L - 0.50)$$

Réfractaire (R) :	Al ₂ O ₃	CA ₆
Quantité de laitier X _s pour une dissolution complète	9 g	7.4 g

Première approche – La réactivité et la solubilité

Al_2O_3 versus CA_6 – Une contradiction ?

Composition pour les 2 réfractaires

	Matrix A		
a)	Tabular alumina	0-0.045 mm	30.0
	Reactive alumina	PFR	27.5
	Tabular alumina	0-0.5 mm	41.0
	Boehmite gel		14.0
	Matrix C	[wt.%]	
b)	Reactive alumina	PFR	20.0
	Tabular alumina	0-0.045 mm	25.0
	Sintered calcium hexaaluminate	0-0.5 mm	40.0
	CA cement	Secar71	15.0
	Dispersant	FS65	0.15
	Water		11.0

Porosité des deux réfractaires :

Composition du laitier pour les essais de corrosion

Oxides:	SiO ₂	CaO	K ₂ O
Weight ratio	2	2	1
Loison et al., Ceramics, 2020			

Cemht

03/05/2023

- Composition différent du laitier Al₂O₃-CaO Mais présence de :
- CaO qui réagit avec le réfractaire Al₂O₃ ou CA₆
- SiO₂ qui réagit et ralentit la réaction
- K₂O qui réagit éventuellement avec le réfractaire

Emmanuel de Bilbao

vité et la solubilité

Figure 3. Permeability of alumina and calcium hexa-aluminate matrix

3.2. Resistance to SIAduz Opgliversus CA₆ - Une contradiction ?

1/Pm [MPa-1]

After reacting at 1400 °C with CSK slag for 24 h, the matrix samples revealed strong differences in their geometries (Figures 4 and 5). The samples were kept massive for space-resolved XRD using an XYZ table as the sample holder. **Resultat corrosion Réfractaire** Al_2O_3

- Des limites de solubilités très proches
- Des porosités assez proches
- Une imprégnation dans Al₂O₃ >> CA₆
- Des perméabilités très différentes

	Al ₂ O ₃	CA ₆
K (milliDarcys)	22.7	4.9

Cemhti

03/05/2023

Résultat corrosion Réfractaire CA₆

samples exhibited the same density of 3.4 g·cm⁻³. The density measured after corrosion is the sum of

all the single contributions of the different phases coexisting in the sample. The reaction with CSK

Emmanuel de Bilbag generates low density products, which require a greater volume than the original phase. The

Première approche – La réactivité et la solubilité

- Dans la cas de la dissolution, la solubilité est importante mais elle n'explique pas toute seule la résistance à la corrosion
- Quelles sont les autres propriétés importantes ?

Les propriétés de transport qui gouvernent l'imprégnation

Laitier

- Diffusivité (réactivité)
- Viscosité

Réfractaire

- Porosité
- Distribution des tailles de pore
- Perméabilité
- Mouillabilité et la succion capillaire

Mesure de la perméabilité

Cemhti

03/05/2023

 ∇

 ∇

Porosité et perméabilité

Emmanuel de Bilbao

Succion capillaire

Emmanuel de Bilbao

EdB : And what are the most important slag properties involved in corrosion of refractory materials?

Chatounet : Slag is a byproduct of certain industrial processes, and it can be highly corrosive to refractory materials. The most important slag properties that can affect the corrosion of refractory materials include:

1.Basicity: *blablabla* The more basic the slag, the more corrosive it can be to acidic refractory materials.

2.Viscosity: *blablabla* Slag with high viscosity may be less corrosive than slag with low viscosity because it is less likely to penetrate the refractory material.

3.Melting point: blablabla.

4.Composition: blablabla

5.Thermal expansion: The thermal expansion coefficient of the slag can affect blablabla

6.Redox potential: blablabla

blablabla

La mesure de la viscosité

Brooks et al., Meas. Sci. Technol., 2005

03/05/2023

Cemhti

Figure 4. Diagram of a counterbalanced sphere viscometer.

- Contactentre le laitier et le dispositif
 - Risque de réaction
 - Limitation en composition

Emmanuel de Bilbao

 \succ

Le banc de lévitation du CEMHTI

Lévitation aérodynamique

Le banc de lévitation du CEMHTI

Le banc de lévitation du CEMHTI

Lévitation aérodynamique Chauffage Laser **Imagerie rapide**

Le banc de lévitation du CEMHTI

Lévitation aérodynamique Chauffage Laser Imagerie rapide **Excitation acoustique**

Détermination de la tension de surface

Détermination de la viscosité

Mesures sur un laitier CaO-SiO₂-Fe₂O₃

Composition des échantillons

Density, viscosity and surface tension of high-silicate CaO–SiO₂ and CaO–SiO₂–Fe₂O₃ slags derived by aerodynamic levitation. The behavior of Fe^{3+} in high-silicate melts

Contents lists available at ScienceDirec

Ceramics International

ERAMIC

Elizaveta Cheremisina^{9,4}, Zheng Zhang^b, Emmanuel de Bilbao^b, Johannes Schenk ^KI-MET Gnbl, Lim, Sublarge 14, 4020, Ausria ^CONE, CAMITI UPESTO, Inin. Golim, F-15071, Orient, Penner ^{Mannawirnimia} Landre, Landre, 1800, Ausria

iournal homepage:

- Atmosphère oxydante :
 - 20 %vol. O₂
 - 80 %vol. Ar
- Plages de temperature :
 - Densité: T_{max} = 1.25 T_{liq.}
 - Tension de surface & Viscosité : 1.05 T_{lia} < T < 1.25 T_{lia}

Cheremisina et al., Ceram. Int. 2023

Caractérisation du fondu

Cemht

■ Q0 ■ Q1 ■ Q2 ■ Q3

Résultats : VISCOSITÉ

■ Q0 ■ Q1 ■ Q2 ■ Q3

Viscosité

- Diminue quand la température 🖉
- Augmente très légèrement quand B2 📎
- CS44 :
 - Faible variation non monotone avec ajout de F Fe₂O₃ effet mixte car Q3 → Q2 vs Q0 → Q2 NBO Stable
- CS63 :
 - Effet plus marqué de F sur la viscosité
 - Tétraèdres Fe³⁺ formateurs de réseau Polymérisation (Q2 → Q3)
- La viscosité augmente avec la polymérisation
 - Dépend clairement de NBO
 - Effet polymérisant de SiO₂ & Fe₂O₃

La modélisation atomistique

- > Dynamique moléculaire
 - Réglage des potentiels sur des analyses de structure
 - Simulation
 - Post-traitement pour extraire des indicateurs

Conclusion

On résume...

Cemht

03/05/2023

- > Dans le cas de la corrosion résultant d'un mécanisme d'imprégnation réactive
- > La limite de solubilité n'est pas suffisante pour expliquer une résistance à la corrosion
- > Les propriétés de transport du laitier dans la porosité du réfractaire sont importantes
 - La perméabilité est importante et peut (doit) être mesurée proprement
 - La viscosité est certainement le paramètre le plus important
 - Sa mesure par les méthodes à contact n'est pas aisée à haute température
- > La technique de lévitation aérodynamique s'est montrée pertinente
 - Il reste des défis à relever dans cette technique
 - Le premier défi est la mesure de la température sans contact
- La dynamique moléculaire et l'intelligence artificielle vont permettre de grands progrès

MERCI!

- Zheng Zhang (CEMHTI), Maureen Yembele (CEMHTI-SGR)Caroline Denier (CEMHTI, CEA Cadarache)
- Elizaveta Cheremesina (K1-MET, Austria)
- Séverine Brassamin, Emmanuel Véron, Vincent Sarou-Kanian (CEMHTI)

3

2