

Apport de la tomographie X à l'évaluation quantitative du Metal Dusting

S. Mathieu

Contributeurs : L. Le Pivaingt, O. Ferry, C. Morlot, M. Vilasi, C. Friant, A. Stuppfler, J-L. Guichard

10 et 11 mai 2023 : Les matériaux utilisés en conditions extrêmes

Equipe 206

Historiquement = équipe Corrosion du Laboratoire de Chimie du Solide Minéral

« Metal Dusting »

(carburation pulvérulente)

 Forme catastrophique de carburation ⇒ désintégration

 i) poussière de graphite
 ii) particules métalliques

Dégradation localisée : piqûres et crevasses ⇒ perforations

> Atmosphères très carburantes

> Atmosphères de nombreux procédés de gazéification

- Production de gaz de synthèse réformage du gaz naturel
- Gazéification de la biomasse (charbon)
- Production et valorisation de gaz dans les UVED

*

Points communs : intervention du mélange gazeux suivant : CO-CO₂-H₂-H₂O-CH₄

- ♦ CO_2 -H₂O : plutôt oxydants \Rightarrow déterminent P_{O2}
- ♦ CO-H₂-CH₄ : plutôt réducteurs ⇒ déterminent a_C
- ✤ Atmosphère globalement réductrice / Air mais P₀₂ telles que :

✓ FeO_x , CoO_y , NiO_z : instables

 \checkmark Al₂O₃, Cr₂O₃, SiO₂: stables

Activité réelle du carbone

En général CO + H₂ = C + H₂O est la plus rapide et est utilisée pour évaluer par calcul a_C suivant :

$$a_{C} = \exp\left[\left(-\frac{\Delta_{r}G^{\circ}_{(1)}}{RT}\left(\frac{P_{CO}P_{H_{2}}}{P_{H_{2}O}}\right)\right]\right]$$

possible : $a_c >> 1$

INSTITUT

∆_rG° (kJ.mol⁻¹) -200

=> équilibres des gaz difficiles à atteindre d'où leur sursaturation

Problème surtout lors du refroidissement : dépôt d'une grande

quantité de C

Les réactions sont lentes \Rightarrow besoin de catalyseurs tels Fe, Ni, Co

> Morphologie

Particules de Fe

(a)

a_c = 1

 $a_c = 2.9$

Rôles de Fe₃C

 ✓ Action catalytique sur la réaction hétérogène :

Gaz⇔ solide

 ✓ Dissolution et transport de C dans l'alliage

- ✓ Favorise la germination hétérogène et croissance de C_{gr}
- ✓ Favorise la croissance des nanotubes de C

Coke filaments with Fe₃C particles at their tips (a) SEM view (b) TEM bright field image and SAD pattern and (c) mass transfer model.

(c)

Fe₃C

Graphite

INSIIIUI

Haut Fourneau

Haut Fourneau à recyclage des gaz avec système de capture de CO₂ et de réinjection des gaz

TGR – BF

« Top Gas Recycling Blast Furnace » Projet démonstrateur

- 1) Oxygène plutôt que Air,
- 2) Séparation des gaz CO₂, CO, H₂

⇒ Stockage géologique du CO_2 ⇒ Réinjection de **CO et H**₂ pour améliorer le rendement et réduire la quantité de CO_2 produite

-> Travail sur le Cowper : Système de réchauffage des gaz

Soutenu par l'ADEME

Construction d'un dispositif d'essai

Objectifs : Evaluer l'influence de la température Caractériser différents matériaux de substrat et de revêtement

 \Rightarrow Essai sous gradient thermique

 $Gaz: 10\%H_2 - 17\%N_2 - 70\%CO - 3\% CO_2$

Four 5 zones, tube en silice, porte-échantillons en alumine

Echantillons = plaquettes 20 x 10 x 2 mm³

Mise sur la pelle d'enfournement

Enfournement via un guide

Position quasi-finalisée

Four à gradient

Caractéristiques des essais

Essai sous gradient thermique 3 K/cm sous 1.1 bars de pression , 60 NL/h

Gaz : 10%H₂ - 17%N₂ - 70%CO - 3% CO₂

JEAN LAMOUR

De manière systématique à 250, 500, 1000, 1250 et 1500 heures d'exposition

- Photo après exposition
- Pesée
- Dépoudrage
- Photo après dépoudrage
- Pesée

Stop à 500 heures (avant et après dépoudrage).

La morphologie du carbone change à partir de 589°C => poudre fine

Suivi prise de carbone et perte de masse

Après 1500 h

 \Rightarrow 2 domaines de températures critiques

INSTITUT

Prise de masse avec dépôt de carbone Perte de masse après nettoyage

Perte de masse en fonction du temps d'exposition

Essentiellement des gains de masse à 250 heures

Perte de masse observée dès 500 heures

2 domaines de températures critiques à partir de 1000 heures d'essai

Caractérisation par Tomographie des coupons après 1500 h

Résolution de 7 à 11 μ m dans les conditions de travail utilisées

INSTITUT

EAN LAMOUR

Profondeur et diamètre des piqûres individuelles

Accès au volume de matière corrodée

Caractérisation post-exposition

	Corrosion généralisée				Corrosion localisée									
	54000	522%0	54690	56400	 	50000		64.0%0	622%	646%6		67496	<u> </u>	→
504°C	518°C	532°C	546°C	561°C	575°C	589°C	603°C	618°C	632°C	646°C	660°C	674°C Terr	689°C	(°C)

Analyse des échantillons par tomographie X

Croissance des piqûres de manière continue

Rapport profondeur sur diamètre de la calotte sphérique tend à être constant = 0.34

Photos = f(t) + Tomographie X à l'issue Accès à la vitesse de croissance

Pit Initiation	Pit number	Diameter (μm)	Depth (μm)	d/Ø ratio	
250 h	13	2405	747	0.31	
< t < 1000 h	4	2262	750	0.33	
	8	1117	301	0.27	
1000 k	6	1005	291	0.29	
1000 n	3	964	314	0.33	
< L < 1250 h	1	937	262	0.28	
1250 11	7	905	257	0.28	
	9	870	316	0.36	
	14	528	180	0.34	
1250 h	2	527	172	0.33	
1250 n	11	523	159	0.30	
< L < 1500 h	10	496	167	0.34	
1200 11	5	489	156	0.32	
	12	477	126	0.26	

T = 632°C; t = 1500 h

Croissance linéaire

Histogramme des vitesses

Un seul maximum : à 632°C

Vitesse de progression de la piqûre en profondeur jusqu'à 2,5 µm/h

Conclusions

- La seule mesure de la perte de masse des échantillons ne permet pas de rendre compte de la vitesse de dégradation.
- L'attaque passe de généralisée à localisée autour de 560°C pour l'alliage testé.
- L'analyse par tomographie X montre que l'attaque par MD augmente de manière continue jusqu'à 630°C puis décroît, du fait de l'évolution opposée de l'activité en carbone et des vitesses de diffusion des espèces/de réactions
 - La vitesse de croissance de la piqûre en profondeur est constante et maximale à la température de 630°C pour l'alliage testé (2,5 μm/heure).
 - La vitesse de progression est donc dépendante de la température et de l'activité carbone

Conclusions

- Essai en four à gradient particulièrement concluant : La température à laquelle le phénomène est le plus marqué pour l'alliage testé est déterminée.
- Dans le domaine de piqûration, le rapport profondeur de piqûre sur diamètre est constant (R = 0.34) pour l'alliage testé

⇒ Résultat déjà observé par Fabas *et al.* sur 800HT => Paramètre important qui peut être utilisé pour qualifier un alliage donné vis à vis de son comportement en MD ou pour le contrôle des infrastructures.

Contents lists available at ScienceDirect

Corrosion Science

journal homepage: www.elsevier.com/locate/corsci

Investigation of the metal dusting attack on the temperature range 500-700 °C using X-ray tomography

S. Mathieu^{a,*}, L. Le Pivaingt^a, O. Ferry^a, M. Vilasi^a, A. Stuppfler^b, J-L. Guichard^b, A. Vande Put^c, D. Monceau^c

^a Université de Lorraine, CNRS, IJL, F-54000 Nancy, France

^b ICAR, 4 Rue Lavoisier, 54300 Moncel-lès-Lunéville, France

^c CIRIMAT, ENSIACET-INPT, 4, allée Emile Monso, BP 44362, F-31030 Toulouse Cedex4, France

